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Resonant Frequency and Tuning Charac-
teristics of a Narrow-Gap Reentrant

Cylindrical Cavity
A. G. WILLIAMSON

Abstract—The literature concerning the reentrant cylindrical cavity is

reviewed and the relative advantages and disadvantages of the various

formulations of the problem are discussed. In addition, a new formulation
is proposed which accurately predicts the resonant frequency of narrow-
gap cavities such as those currently finding application in the construction
of solid-state oscillators. This new formulation is mathematically simpler
and numerically more efficient than many other formulations which are
not as accurate, The paper concludes with an investigation of the toning

characteristics of the cavity.

I. INTRODUCTION

T HE reentrant cylindrical cavity shown in Fig. 1 was

first investigated almost 40 years ago in connection

with the development of klystrons, and since that time a

number of interesting papers have appeared on the subject

all attempting to further our understanding of this basic

but most useful cavity. The simple mechanical construction

and wide tuning range are characteristics of this cavity

which can be usefully employed in the design of microwave

oscillators, and it is therefore not surprising that along

with the recent developments in solid-state devices, and in

particular the advent of tunnel and Gunn diodes, there

has come renewed interest in reentrant cylindrical cavities.

Indeed, a few papers have appeared recently in which this

cavity has been investigated for geometries appropriate to

such semiconductor devices [2], [3].

The purpose of this paper is twofold: firstly, to attempt a

reasonably complete review of the literature on the subject,

and secondly, to propose a reasonably accurate, numerically

simple method of calculating the fundamental resonant

frequency of a narrow-gap cavity.

II. REVIEW

The first analysis of the reentrant cylindrical cavity was

presented by Hansen [1] who considered the structure to be

composed of the two regions, I and II, as shown in Fig, 1,
having the surface r = a, O < z < g in common. By

approximating the electric field on this surface and matching

the magnetic field results obtained for the two regions at
r=aandz=g, Hansen obtained a transcendental

equation from which the resonant frequency could be

calculated. (NB, Hansen’s approximation for the electric

field, which was intended to be a good approximation when

g was small, is, in fact, considerably in error [4], [5].)

The resonant frequency predicted by Hansen’s analysis was

generally within a few percent of the correct result and thus
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Fig. 1. Cross section of the reentrant cylindrical cavity.

sufficiently accurate for many applications, and for this

reason results com-puted from his formulation have had

widespread publication [6]-[8].’

In 1941 Hahn [9] proposed an alternative formulation

in which the field quantities were first expanded as finite

Fourier series after which the boundary conditions were

applied and the unknown coefficients evaluated. While

Hahn’s work has been used and referenced by other authors

it appears to have had relatively little application compared

to Hansen’s.

By 1946 it had been observed that Hansen’s formulation

became inaccurate when kh > 7c/2, and in an effort to

overcome this deficiency Mayer [10] proposed a solution

based on the variational method of Schwinger. Using his

formulation Mayer predicted the resonant frequencies of a

number of long reentrant cavities with an accuracy of about

2 percent. It must be pointed out, however, that the accuracy

obtained by Mayer was achieved at some expense in that

his variationally derived expression was very complex both

mathematically and numerically.

Subsequently, there was interest in obtaining a math-

ematically simple engineering solution for the problem,

and to this end an approximate formulation was proposed

by Kihara [11], while a decade later a general treatment of

klystron cavities was given by Fujisawa [12]. (A more

mathematically detailed consideration of general cavities

was earlier given by Hansen and Richtmyer [13].) In his

analysis Kihara made gross approximations to the magnetic

field in order to simplify the form of the solution, and, as a

consequence, results predicted by his formulation only

qualitatively illustrate the electrical behavior of the cavity.

Fujisawa, on the other hand, used a Green’s function

approach to propose an equivalent circuit for a general
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cylindrical cavity. This equivalent circuit predicts the

resonant frequency of a reentrant cylindrical cavity to

within a few percent provided the cavity is neither too flat

nor, with a thin center post, too long.

Theoretical and experimental studies have also been

made of the reentrant cylindrical cavity with an offset gap

[15], [16], and it is interesting to note that in addition to

the previously mentioned analytictil studies there has also

been the occasional study using some analogous static

situation [14].

Some of the approximate analyses mentioned previously,

together with those which may be obtained by considering

the cavity as a coaxial line region supporting only the TEM

mode and so on, are, in many cases, not sufficiently accurate

for design purposes [2], [3], especially for many of the

problems of current interest, As a result there has recently

been some reinvestigation of the reentrant cylindrical

cavity. In particular Uenakada [2] used a combined Green’s

function and variational approach to compute the resonant

frequencies of a set of cavities whose dimensions were

typical of those used in the construction of solid-state

equipment. Like Hansen, Uenakada chose the surface

r = a, O s z s g to be the division between the two cylin-

drical regions and he imposed the condition that at reson-

ance the total admittance (i.e., the sum of the admittances

of regions I and II) at this boundary must be zero. He

calculated the admittance of region I using the Green’s

function together with a variational expression for the

admittance in which he used the trial function

M= l+mcos~.
9

This function was proportional to Ez(a,z), the electric

field in the gap at r = a, O s z < g, and Uenakada treated

m as the variational variable which he determined by

imposing the condition dY/dm = O, where Y was the

admittance of region I as seen at the gap. His final ex-

pression for the admittance Y was quite complicated and

required the summation of three infinite series, the numerical

evaluation of which does not appear especially easy. (The

details of the numerical evaluation procedure were not given

by” Uenakada.) Furthermore, in every term of all three

infinite series there occurs a common integral which must

be evaluated numerically. Finally, he assumed that the

admittance seen looking into the radial transmission line

region (i.e., region II) was that due to a TEM mode alone.

In an experimental study Uenakada demonstrated his

theoretical approach to be accurate to about 3 or 4 percent

(on the average) for cavities with narrow gaps (see Table I).

In their paper Rivier and Verg6-Lapisardi [3] pointed

out that a simple LC equivalent circuit may be used to

approximately represent the cavity where the values of the

components of the equivalent circuit may be deduced from

experimental measurements. They confirmed this by demon-

strating the approximately linear region of the (1/40) o

(J.,,,/2f.z)2(g/h) versus (g/h) curve.

It was this author’s contention that it was possible to

evaluate, with reasonable accuracy, the properties, par-

ticularly the resonant frequency, of a reentrant cylindrical

cavity satisfying (1) by means which do not involve the

mathematical and computational complexitim found in

many previous formulations. Such a theory was developed

as will be outlined.

III. FORMULATION OF THE PROBLEM

Consider now the reentrant cylindrical cavity shown in

cross section in Fig. 1 with particular interest in cases where

g<2a (1)

(a condition imposed by most device packages), the medium

filling the cavity is air, and the cavity walls are assumed to

be perfectly conducting. Let us investigate the fundamental

mode in which Ee is zero and the fields are independent of

6, and begin by formulating Green’s functions for regions I
and II which describe the magnetic field in th~e particular

region for the case where the electric field on the surface

r = a is Ezd(a,z) given by

Ez6(a,z) = - 6(z – z’) otj(r - [a * O]), (l<z’<g

where the positive sign is taken for a source in region I

and the negative sign for a source in region II. ‘The Green’s

function for region I can be shown to be

(“ J1(kr)YO(kb) – .70(kb)Y1{kr)
H,(r,z;z’) = – J-

Zh JOY – JOY

mzz’ mrcz
Cos — Cos —

+25 h h

m=l q.

).KJ~J~)~l(qJ~) + ~i(%@)~dmM)

Ko(q#b)Io(qMka) – Ko(qnka)Io(q~kb)

(2)

where the r and z axes are defined in Fig. 1, and q~, k, and i

are given by

J )
2

qm= C?J! –1, k = 27t/h, i = 4X

while Z is the intrinsic impedance of free space. The Green’s

function for region II, on the other hand, maybe shown to

be

(“ Jl(kr)
HJ1(r,z;z’) = – J- —

Zg Jo(ka)

mnz’ mnz
Cos — Cos —

+2~ 9

)

g . ~l(qiti*kr) (3)
~=1 %* Io(q~*ka)

where

J )mn 2
%n* = – 1.

~

The magnetic field in each region of the cavity maybe found
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by convolving the appropriate Green’s function with the

aperture electric field EZ(a,z), and the solution of the problem

found by enforcing the continuity of the magnetic field

across the aperture, namely

J
9

Ho(a,z) = – EZ(a,z’) “ H/(a,z;2’) dz’
o

J

9

.— ~z(cI,Z’) “ ~~r(cZ,Z ;Z ‘) dz ‘, Osz<g
o

(4)

where 170(a,z) is the magnetic field in the aperture.

Now if E (a,z) were known, the resonant frequency of the

cavity could be found by solving (4) for any value of z

satisfying O s z s g. (NB, Hansen [1] chose z = g.)

Alternatively, we could solve any equation derived from (4),

For reasons which will become clearer shortly, let us equate

the average value of the magnetic field Ho(a,z) in the gap

aperture obtained for the two regions, namely

-f

19

L1
199

HJ(2,Z) dz = – – Ez(a,z ‘)H/(a,z;z’) dz’ dz
90 900

H

199

=—. Ez(a,z ‘)H~l(a,z ;Z’) dz’ dz.
900

(5)

Now using (2) and (3) it can be shown that (5) reduces to

i Jl(ka) = i

(

~ sin mc——. ——
Zg Jo(ka) Zh

xo+~ —“xm
m=l mc

“J
9

ez(z’) cos ?’ dz ‘
)

(6)
o

~. = .ll(ka)Yo(kb) – .Jo(kb)Y1(ka)

.lo(ka)Yo(kb) – Joy

and

2 Ko(qJcb)ll(qJca) + K1(qmka)Io(qJcb)
?&=—”

9~ ~0(qm~~)zo(f3m@ – ~o(qm~a)lo(fzmkb)’

m>l

while

“(”) = fi:::~dz and ‘ = ? “

The advantages of using (5) instead of (4) are now evident.

In the first place, the left-hand side (LHS) of (6) consists of

only one term and the right-hand side (RHS) of(6) contains

only one infinite series. Furthermore, it is known that the

form of the RHS of (6) is such that its numerical value is

considerably less sensitive to error in Ez(a,z) than is HO(a,z)

as calculated by (4). As a result, it is to be expected that (6)

would more accurately predict the resonant frequency

than would (4) if an approximation was used for EZ(a,z),

the method used shortly to solve (6).

It must be remembered, of course, that the exact form of

EZ(a,z) could be found by solving an integral equation, a

very formidable task indeed. Alternatively, the trans-

cendental. equation for the problem could be cast into a

variational form and numerical results obtained by using a

first-order solution for EZ(a,z). Neither of these approaches

are particularly simple analytically nor are the resulting

equations, in general, simple to program for rapid numerical

solution. On the other hand, (6) is a simple and exact

equation which will yield, for the reasons discussed pre-

viously, quite accurate results for the resonant frequency

if a reasonably accurate approximation is used for Ez(a,z).

Now recall that we are principally concerned with narrow-

gap situations given by (1) and let us take the following

approximation for e=(z):

(

0.650804 + 0.187976.3 ~
e,(z) = –

& . ~g2 _ 22 9513 )
Vfg -z’.

It has been shown [4], [5] that this approximation is

within +0.6 percent of the exact result for the limiting

case g ~ O. Furthermore, it has also been estimated [5]

for g-< a that e=(z) is within ~ 2 percent of the actual

electric field distribution. The use of this approximation

is therefore most appropriate. Using this approximation

(6) becomes

(Jl(ka) g ‘“ sin mc— .- Xo+ ~ xm—
.lO(ka) h ~=1 mc

(.~,.ll,G(mc) + ~ . J5,Jmc)

(me)’J’ (me)’/’ )}
(7)

where C = 0.876644 and D = 0.265061. It is this trans-

cendental equation which is solved numerically for the

resonant frequency. (The numerical aspects are discussed

in the Appendix.) It is interesting that (7), which ought to

quite accurately predict the resonant frequency for the

case where g is small as a result of the excellent approxima-

tion used for e=(z) in that case, also predicts the correct

result when g = h because of the manner in which the

continuity condition was applied, namely (5).

IV. COMPARISONOF THEORETICAL AND EXPERIMENTAL

RESULTS

In Table I, a comparison k made between the theoretical

results for the resonant frequency, ~W, calculated from (7)

and the experimental results, fm, of Uenakada [2]. The

percentage error between fw and ~~, namely eW, is also

shown in Table I together with the percentage error [2],

eU, between fm and the results computed by Uenakada’s

formulation. It can be seen that (7) predicts the resonant
frequency to better than 1 percent except for cavity 6 where

eU = 1.45 percent. In view of the fact that the dimensions of

cavities 3 and 6 are similar, it is difficult to rationalize the

vast difference in the accuracy of fW for the two situations,

0.53 percent in one case and 1.45 percent in the other. It

seems reasonable, therefore, to suppose that fm for cavity 6

is slightly in error and that eW for this cavity is likewise

about 0.6 percent.

Note that for g < 2a (excluding cavity 6) the resonant

frequency predicted by (7) is accurate to about 0.7 percent

on the average, clearly improving as g/a and g/h decrease.

Furthermore, it is interesting to observe that for these cases

Uenakada’s theoretical results, obtained from a formulation

which is both mathematically and computationally more

complicated than that presented here, are only accurate to
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TABLE I
A COMPARISONOFTHETHEORETICALANOEXPERIMENTALRESULTSFOR
THERESONANTFREQUENCIESOFA NUMBEROFREENTRANTCYLINDRICAL

CAVITIES

r
Cavity

No. h(mn) g(m) a(mn) b(mm) fm(GHz) fw(GHz) ew(%) eu(%)

1 22.792 7.958 6.004 42.29 ‘2.135 2.1244 0.49 4.17

2 34.826 8.028 5.992 13.8 2.326 2.3086 0.73 2.14

3 31.806 7.984 5.9935 20.99 2.280 2.2678 0.53 4.02

4 28.019 7.999 5.999 29.988 2.2264 2.2164 0.44 4.90

5 31.806 7.980 3.495 20.99 2,394 2.3749 0.79 0.11

6 33.806 10.000 8.405 20.99 2,3027 2.2689 1.45 4.4

7 33.806 10.100 4.206 . 20.99 2.4018 2.3789 0.95 0.004

Note: f. is the resonant frequency measured by Uenakada; f. is that
calculated by (7); while ewand ,eUare the percentage errors between
Land f,, andf~ and the theoretical results of Uenakada, respectively.

.0.J I 1 1
.0

1 I
.2 .4 .6

a%’a

Fig. 2. Plot of & (A,.J2a)2g/ti versusg/h for b/a = 5 and h{a = 2.12:

theoretical results trom (7); _ theoretical
results of Rhier and Verg&Lapisardi [3]; __________ theoretical
results from Fujisawa’s formulation [12]”. . . . . . . . . . . . . experimental
results of Rivier and Verg6-Lapk.ardi [3].

about 3 percent on the average, This is largely attributable

to the excellence of the approximation u8ed for eZ(z) and

the manner in which the continuity condition was applied.

Clearly then, (7) is a most suitable equation from which to

calculate the resonant frequencies of reentrant cavities

currently being used in the design of solid-state equipment.

Furthermore, in view of its accuracy and computational

simplicity, (7) represents a significant advance, for such cases,
on formulations previously proposed.

In Fig. 2 the parameter (1/40)(&,/2a)2(g/h) is plotted

as a function of g/h (where & is the resonant wavelength)

as calculated by (7) for the case considered by Rivier and

Verg6-Lapisardi [3], namely b/a = 5 and h/a = 2.12. Also

plotted in Fig. 2 are the experimental results of Rivier and

Verg&Lapisardi and the theoretical results calculated by

Fujisawa’s formulation [12]. From this figure it is clear

that while our theoretical results and Rivier and Verg4-

Lapisardi’s experimental results agree quil e well when

0.2< g/h <0.6, the agreement is far from satisfactory

in the range O < g/h < 0.2. It has already been established

that theoretical results from (7) for this range of values of

g/h, g/h being the parameter which essentially controls the

accuracy of (7), are in error by less than about 0.7 percent,

and it must therefore be concluded that Rivier and Verg6-

Lapisardi’s experimental results for g/h < 0.2 are in error.

Note also that results calculated from Fujisawa’s formula-

tion which were said by Rivier and Verg&Lapisardi to be

inaccurate are, in fact, in this case, quite accurate for small

g/h. Finally, observe from Fig. 2 that the approximately

linear portion of the curve, which was the characteristic

used by Rivier and Verg&Lapisardi to evaluate the mag-

nitude of the components of their equivalent circuit, is in

fact more extensive than their experimental work indicated.

V. INCORPORATION OF A SEMICONDUCTORDEVICE

In the theoretical work presented in this paper so far,

only the air-gap situation has been considered, although

it has been intimated that the analysis maybe tiasily modified

to consider the particular case where a semiconductor

device is placed in the gap. The situation in the gap region

then becomes that shown in Fig. 3 where g, the height of

the gap, is dictated by the device size; and d, the radius of

the device, is usually less than a, the central post radius.

In some situations one may take a = d.

Let us consider, briefly, the case of a solid-state oscillator

and for the present assume that the cavity is not connected

to any external load. If the device admittance, YD, is taken

to be given by

y _ 2nd . fl Ho(d,z) dz
D

g M W4.Z) dz

where EZ(d,z) and Ho(d,z) are the electric and magnetic

fields, assumed rotationally symmetric, cm the device
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1- ti,ce

Fig. 3. Cross section of the cavity with a semiconductor device in
position.

surface, then it can be shown [5] that the transcendental

equation for the resonant frequency is

()Im ~YD’”=xO+ ~ x.=’
27ca ~=~ mc

(“ c“ )~1/6(mc) + ~. ~5/6(mc) @~

(mc)116 (mc)516

where YD’ is the device admittance referred to the surface

r = a. (Whether oscillation would occur in practice is, of

course, dependent on the satisfaction of other criteria.)

Now if we included consideration of the means by which

the cavity was connected to ah external load we would

obtain yet another equation for that particular situation.

However, the important point to appreciate is that if the

load is only lightly coupled to the cavity, then the resonant

frequency is about the same as, and varies in a similar

manner to, that given by (8].

In view of the wide variety of possible coupling systems

we do not propose to pursue this avenue further, but rather

to conclude this paper with an investigation of the tuning

characteristics of an air-gap cavity as predicted by (7), since

this provides some qualitative appreciation of the electrical

behavior of the cavity.

VI. TUMNG CHARACTERISTICS

In Fig. 4 kare,, the value of ka at resonance, is plotted as a

function of h/a for b/a = 5 and various values of g/a

while Fig. 5 is a plot of ka,e, versus h/a for g/a = 1 and

various values of b/a. (NB, the curves have been plotted as
a function of h/a since, in practice, the cavity height is

frequently used as the means of adjusting the resonant

frequency.) From these curves it can be seen that for a given

increment in h the change in the resonant frequency is

greater for small values of g/a (b/a tied) than for larger

values of g/a and is also greater for smaller values of b/a

(g/a fixed) than for larger values of b/a. The advantage one
takes of these features depends, of course, on the application

in mind. For example, if one was designing a tunable

oscillator with the cavity height being the tuning parameter,

one might choose a small value of b/a and a small value of

g/a in order to obtain a wide frequency variation for a given

.5 ~

ka~

.4-

.3-

.2-

.1-

.0 , I , , 1 <
0 2 4 6

8va~

Fig. 4. Variation of ka,., as a function of h/a for b/a = 5 and various
values of g/a.

1.2~

kam

1.o-

.8-

.6-

.4-

.2-

Fig. 5. Variation of ka,., as a function of h]a for gla = 1 and various
values of b/a.

limited variation in h. On the other hand, if good frequency

stability was required from a fixed frequency oscillator,

larger values for both b/a and g/a t-night be chosen. (NB,

the maximum value of g/a is determined by the device size.)
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VII. CONCLUSION

The reentrant cylindrical cavity has been investigated

in this paper and we have seen that over the years a number

of different formulations have been published from which

the properties of the cavity, and in particular the resonant
frequency, may be calculated. This cavity has recently

found application in the construction of solid-state oscil-

lators and attention has been drawn to recent theoretical

attempts to obtain accurate results for the resonant fre-

quency of cavities suitable for mounting semiconductor

devices. In this paper a formulation has been developed,

being basically a superior form of Hansen’s approach [1],

which predicts the fundamental resonant frequency of

the cavity to better than 1 percent if g c 2a. Furthermore,

it has been demonstrated that this new theory is math-

ematically simpler and numerically more efficient than

alternative formulations which are not as accurate.

APPENDIX

The numerical solution of(7) is usually required either for

the situation where a, b, h, and the resonant frequency are

prescribed and g is required to be found, or where a, b, h,

and g are prescribed and the resonant frequency is required

to be found. For both of these cases it is possible to obtain

an equation from (7) one side of which is invariant. with

respect to the unknown quantity, namely (7) for the former

case and (7) divided by the term in parenthesis on the RHS

of (7) for the latter. The results for the two cases g/h = O

and g/h = 1, which are known analytically, may then be

used to initiate an iterative solution procedure in which a

result for the unknown is obtained from the previous

results by a curve-fitting technique. This iteration procedure

may be continued until the unknown is evaluated to the

required precision. Solution techniques of this kind have

been used frequently in the past and, as such, the details

will not be further discussed here.

The numerical work involved in (7), or modifications of

it, is for the most part very simple, the exception being the

evaluation of the sum of the infinite series. For narrow-gap

situations it can be shown that

M

z{( “-+(92”:”3”=~+~hl~ m
*=1 nm

(“ c“ ‘1/6(mc) + ~. J5,6(7?’IC)

(me)’/’ (mc)516 )

( ))

sin me 2
+2~h”fim” —

n mc

- Ij (+(1 - cos [2c]) + sin2 c(2 In [2 sin c] – 1))

()kh2e~ 1—— “ — “ (n’ + [7C - c]’ - 2n2[7c – C]2)
n ka 96c2

( (

(c/2
+ 2% . 0.04757 – 0.03529. 1 – –—

n tan c[2 ))

+ 0.017650
()
:2”; ”(n -c)

where

This expression is accurate to within A 0.01 percent if AI

is chosen to satisfy the relationship

A detailed derivation of the foregoing result maybe found

elsewhere [5].
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