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The Resonant Frequency and Tuning Charac-
teristics of a Narrow-Gap Reentrant
: Cylindrical Cavity

A. G. WILLIAMSON

Abstract—The literature concerning the reentrant cylindrical cavity is
reviewed and the relative advantages and disadvantages of the various
formulations of the problem are discussed. In addition, a new formulation
is proposed which accurately predicts the resonant frequency of narrow-
gap cavities such as those currently finding application in the construction
of solid-state oscillators. This new formulation is mathematically simpler
and numerically more efficient than many other formulations which are
not as accurate. The paper concludes with an investigation of the tuning
characteristics of the cavity.

1. INTRODUCTION

HE reentrant cylindrical cavity shown in Fig. 1 was

first investigated almost 40 years ago in connection
with the development of klystrons, and since that time a
number of interesting papers have appeared on the subject
all attempting to further our understanding of this basic
but most useful cavity. The simple mechanical construction
and wide tuning range are characteristics of this cavity
which can be usefully employed in the design of microwave
oscillators, and it is therefore not surprising that along
with the recent developments in solid-state devices, and in
particular the advent of tunnel and Gunn diodes, there
has come renewed interest in reentrant cylindrical cavities.
Indeed, a few papers have appeared recently in which this
cavity has been investigated for geometries appropriate to
such semiconductor devices [2], [3].

The purpose of this paper is twofold: firstly, to attempt a
reasonably complete review of the literature on the subject,
and secondly, to propose a reasonably accurate, numerically
simple method of calculating the fundamental resonant
frequency of a narrow-gap cavity.

II. REvViEW

The first analysis of the reentrant cylindrical cavity was
presented by Hansen [ 1] who considered the structure to be
composed of the two regions, I and II, as shown in Fig,. 1,
having the surface r = a, 0 < z < g in common. By
approximating the electric field on this surface and matching
the magnetic field results obtained for the two regions at
r=a and z =g, Hansen obtained a transcendental
equation from which the resonant frequency could be
calculated. (NB, Hansen’s approximation for the electric
field, which was intended to be a good approximation when
g was small, is, in fact, considerably in error [4], [5].)
The resonant frequency predicted by Hansen’s analysis was
generally within a few percent of the correct result and thus
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Fig. 1. Cross section of the reentrant cylindrical cavity.
sufficiently accurate for many applications, and for this
reason results computed from his formulation have had
widespread publication [6]-[8].'

In 1941 Hahn [9] proposed an alternative formulation
in which the field quantities were first expanded as finite
Fourier series after which the boundary conditions were
applied and the unknown coefficients evaluated. While
Hahn’s work has been used and referenced by other authors
it appears to have had relatively little application compared
to Hansen’s.

By 1946 it had been observed that Hansen’s formulation
became inaccurate when kA > n/2, and in an effort to
overcome this deficiency Mayer [10] proposed a solution
based on the variational method of Schwinger. Using his
formulation Mayer predicted the resonant frequencies of a
number of long reentrant cavities with an accuracy of about
2 percent. It must be pointed out, however, that the accuracy
obtained by Mayer was achieved at some expense in that
his variationally derived expression was very complex both
mathematically and numerically.

Subsequently, there was interest in obtaining a math-
ematically simple engineering solution for the problem,
and to this end an approximate formulation was proposed
by Kihara [11], while a decade later a general treatment of
klystron cavities was given by Fujisawa [12]. (A more
mathematically detailed consideration of general cavities
was earlier given by Hansen and Richtmyer [13].) In his
analysis Kihara made gross approximations to the magnetic
field in order to simplify the form of the solution, and, as a
consequence, results predicted by his formulation only
qualitatively illustrate the electrical behavior of the cavity.
Fujisawa, on the other hand, used a Green’s function
approach to propose an equivalent circuit for a general
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cylindrical cavity. This equivalent circuit predicts the
resonant frequency of a reentrant cylindrical cavity to
within a few percent provided the cavity is neither too flat
nor, with a thin center post, too long.

Theoretical and experimental studies have also been
made of the reentrant cylindrical cavity with an offset gap
[15], [16], and it is interesting to note that in addition to
the previously mentioned analytical studies there has also
been the occasional study using some analogous static
situation [14].

Some of the approximate analyses mentioned previously,
together with those which may be obtained by considering
the cavity as a coaxial line region supporting only the TEM
mode and so on, are, in many cases, not sufficiently accurate
for design purposes [2], [3], especially for many of the
problems of current interest. As a result there has recently
been some reinvestigation of the reentrant cylindrical
cavity. In particular Uenakada [2] used a combined Green’s
function and variational approach to compute the resonant
frequencies of a set of cavities whose dimensions were
typical of those used in the comstruction of solid-state
equipment. Like Hansen, Uenakada chose the surface
r=a,0 < z £ g to be the division between the two cylin-
drical regions and he imposed the condition that at reson-
ance the total admittance (i.e., the sum of the admittances
of regions I and II) at this boundary must be zero. He
calculated the admittance of region I using the Green’s
function together with a variational expression for the
admittance in which he used the trial function

M=1+ mcos 2,
g

This function was proportional to E,(a,z), the electric
fieldinthe gapatr = a,0 < z < g, and Uenakada treated
m as the variational variable which he determined by
imposing the condition dY/dm = 0, where Y was the
admittance of region I as seen at the gap. His final ex-
pression for the admittance Y was quite complicated and
required the summation of three infinite series, the numerical
evaluation of which does not appear especially easy. (The
details of the numerical evaluation procedure were not given
by Uenakada.) Furthermore, in every term of all three
infinite series there occurs a common integral which must
be evaluated numerically. Finally, he assumed that the
admittance seen looking into the radial transmission line
region (i.e., region IT) was that due to a TEM mode alone.
In an éxperimental study Uenakada demonstrated his
theoretical approach to be accurate to about 3 or 4 percent
(on the average) for cavities with narrow gaps (see Table I).

In their paper Rivier and Vergé-Lapisardi [3] pointed
out that a simple LC equivalent circuit may be used to
approximately represent the cavity where the values of the
components of the equivalent circuit may be deduced from
experimental measurements. They confirmed this by demon-
strating the approximately linear region of the (1/40)-
(Ares/2@)*(g/h) versus (g/h) curve.

It was this author’s contention that it was possible to
evaluate, with reasonable accuracy, the properties, par-
ticularly the resonant frequency, of a reentrant cylindrical
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cavity satisfying (1) by means which do not involve the
mathematical and computational complexities found in
many previous formulations. Such a theory was developed
as will be outlined.

I1I. FORMULATION OF THE PROBLEM

Consider now the reentrant cylindrical cavity shown in
cross section in Fig. 1 with particular interest in cases where

<2 )

(a condition imposed by most device packages), the medium
filling the cavity is air, and the cavity walls are assumed to
be perfectly conducting. Let us investigate the fundamental
mode in which Ej is zero and the fields are independent of
0, and begin by formulating Green’s functions {'or regions I
and II which describe the magnetic field in the particular
reglon for the case where the electric ﬁeld on the surface
= ais E,’(a,z) given by

Eza(a$z) -'6(2 - Z) 5(" ha [a 0])1

where the positive sign is taken for a source in region I
and the negative sign for a source in region II. The Green’s
function for region I can be shown to be

0<z <g

HXrzz") = — — J (kr)Yo(kb) — Jo(kb)Y,(kr)
P Zh \ T y(ka) Yo(kb) = To(kb)Yo(ka)

mnz’ mnz

COoS COS ——

23— h h
m=1

Im

Ko(gnkb)o(gnka) — Ko(gmka)lo(qnkb)

2

where the r and z axes are defined in Fig. 1, and ¢,,, k, and {
are given by

qm=\/("ﬂ)2 —1, k=2 i=~-1

kh

while Z is the intrinsic impedance of free space. The Green’s
function for region II, on the other hand, may be shown to
be

Hg"(T,Z;Z’) = - __l_ Jl(kr)
Zg Jo(ka)
mnz’ mnz
© COS CoS —— I (q *kr))
g g 1\Y'm
2 . 3
; I Io(gm*ka)/ @

where

o [T
m kg ¢

The magnetic field in each region of the cavity may be found
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by convolving the appropriate Green’s function with the
aperture electric field E,(a,2), and the solution of the problem
found by enforcing the continuity of the magnetic field
across the aperture, namely

g
Ha(a,z) - f Ez(asz’) : Hel(a,zizl) dz’
0

0<z<yg

@

4
- f Ez(a’zl) : HGH(aJZ;Z’) dZ’,
o

where Hy(a,z) is the magnetic field in the aperture.

Now if E (a,z) were known, the resonant frequency of the
cavity could be found by solving (4) for any value of z
satisfying 0 < z < g. (NB, Hansen [1] chose z = g.)

 Alternatively, we could solve any equation derived from (4).
For reasons which will become clearer shortly, let us equate
the average value of the magnetic field Hy(a,z) in the gap
aperture obtained for the two regions, namely

1 g 1 g ()
- f Hyaz)dz = — = f f E/(a,z)H,\a,z;z") dz' dz
g Jo g Jo Jo

g g
_1 f f E,(a,z")H,a,z;z") dz’ dz.
gJo Jo

(5)
Now using (2) and (3) it can be shown that (5) reduces to
_ Jyka) _ _ i ( °Z°: sin mc _
Zg Jo(ka)  Zh m=1
: f ? e(2") cos MTE dz’) )
o h
where
_ Ji(ka)Yo(kb) — Jo(kb)Y,(ka)
° T Tolka)Yo(kb) — Jo(kb)Yo(ka)
and

_ 2. Ko(.kb)](gnka) + K(g,ka) o(qnkb)

. Ko@ukD)o(quka) — Ko(@uka)lo(g,kd)’
m>=1

while
E,(a,z")
(4 E(a,z) dz

The advantages of using (5) instead of (4) are now evident.
In the first place, the left-hand side (LHS) of (6) consists of
only one term and the right-hand side (RHS) of (6) contains
only one infinite series. Furthermore, it is known that the
form of the RHS of (6) is such that its numerical value is
considerably less sensitive to error in E,(a,z) than is H,(a,z)
as calculated by (4). As a result, it is to be expected that (6)
would more accurately predict the resonant frequency
than would (4) if an .approximation was used for E,(q,z),
the method used shortly to solve (6).

It must be remembered, of course, that the exact form of
E,(a,z) could be found by solving an integral equation, a
very formidable task indeed. Alternatively, the trans-
cendental .equation for the problem could be cast into a
variational form and numerical results obtained by using a

9.

and ¢ =

ez') =
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first-order solution for E,(a,z). Neither of these approaches
are particularly simple analytically nor are the resulting
equations, in general, simple to program for rapid numerical
solution. On the other hand, (6) is a simple and exact
equation which will yield, for the reasons discussed pre-
viously, quite accurate results for the resonant frequency
if a reasonably accurate approximation is used for E,(a,2).
Now recall that we are principally concerned with narrow-
gap situations given by (1) and let us take the following
approximation for e,(z):

e(z) = — ( 0.650804

SRV o
It has been shown [4], [5] that this approximation is
within +0.6 percent of the exact result for the limiting
case g — 0. Furthermore, it has also been estimated [5]
for g-< a that e,(z) is within +2 percent of the actual
electric field distribution. The use of this approximation

is therefore most appropriate. Using this approximation
(6) becomes

0.187976 VQT:?) .

Ji(ka) _ g & sin me
Jolka) h {x + mz="1 x me
A . Juslme) . JIs6(me)
(C (mo)s +D (mo)s )} (7)

where C = 0.876644 and D = 0.265061. It is this trans-
cendental equation which is solved numerically for the
resonant frequency. (The numerical aspects are discussed
in the Appendix.) It is interesting that (7), which ought to
quite accurately predict the resonant frequency for the
case where g is small as a result of the excellent approxima-
tion used for e,(z) in that case, also predicts the correct
result when g = 4 because of the manner in which the
continuity condition was applied, namely (5).

IV. COMPARISON OF THEORETICAL AND EXPERIMENTAL
REsuLTS

In Table I, a comparison is made between the theoretical
results for the resonant frequency, f,, calculated from (7)
and the experimental results, f,,, of Uenakada [2]. The
percentage error between f,, and f,,, namely e,, is also
shown in Table I together with the percentage error [2],
e,, between £, and the results computed by Uenakada’s
formulation. It can be seen that (7) predicts the resonant
frequency to better than 1 percent except for cavity 6 where
e, = 1.45 percent. In view of the fact that the dimensions of
cavities 3 and 6 are similar, it is difficult to rationalize the
vast difference in the accuracy of f,, for the two situations,
0.53 percent in one case and 1.45 percent in the other. It
seems reasonable, therefore, to suppose that £, for cavity 6
is slightly in error and that e, for this cavity is likewise
about 0.6 percent.

Note that for g < 2a (excluding cavity 6) the resonant
frequency predicted by (7) is accurate to about 0.7 percent
on the average, clearly improving as g/a and g/h decrease.
Furthermore, it is interesting to observe that for these cases
Uenakada’s theoretical results, obtained from a formulation
which is both mathematically and computationally more
complicated than that presented here, are only accurate to
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TABLE 1
A COMPARISON OF THE THEORETICAL AND EXPERIMENTAL RESULTS FOR
THE RESONANT FREQUENCIES OF A NUMBER OF REENTRANT CYLINDRICAL

CAVITIES

Cavity | h(m) g(mn) a(m) b{mm) fa(GHz) | fu(BHz) | ey(#) | ey(®)
1 22.792 7.958 | 6.004 42.29 2.135 2,244 | 0.49 4.17
2 34.826 8.028 | 5.992 13.8 2.326 2.308 | 0.73 2.14
3 31.806 7.98 | 5.9935 | 20.99 2.280 2.2678 | 0.53 4.02
4 | 28.019 7.999 | 5.999 29.988 | 2.2264 | 2.2164 | 0.44 4.9
5 31.806 7.980 3,495 20.99 2.394 2.3749 0.79 0.1
6 33.806 10.000 8.405 20.99 2,3027 2.2689 1.45 4.4
7 33.806 10.100 4,206 20,99 2.,4018 2.3789 0.95 0.004

Note: f,, is the resonant frequency measured by Uenakada; f,, is that
calculated by (7); while e, and e, are the percentage errors between
Jm and f,, and f, and the theoretical results of Uenakada, respectively.

1.0

6

o2

0

{0 2 4 Bl 8 %, 10

Fig.2. Plotof ZIT) (Ares/20)? g/h versus g/h for bja = 5 and hla = 2.12:

_____ theoretical results trom (7); theoretical
results of Rivier and Vergé-Lapisardi [3}; __________ theoretical
results from Fujisawa’s formulation [12]; ............ experimental
results of Rivier and Vergé-Lapisardi [3].

about 3 percent on the average. This is largely attributable
to the excellence of the approximation used for e,(z) and
the manner in which the continuity condition was applied.
Clearly then, (7) is a most suitable equation from which to
calculate the resonant frequencies of reentrant cavities
currently being used in the design of solid-state equipment.
Furthermore, in view of its accuracy and computational
simplicity, (7) represents a significant advance, for such cases,
on formulations previously proposed.

In Fig. 2 the parameter (1/40)(,../22)*(g/h) is plotted
as a function of g/h (where A, is the resonant wavelength)
as calculated by (7) for the case considered by Rivier and
Vergé-Lapisardi [3], namely b/a = 5 and hja = 2.12. Alse
plotted in Fig. 2 are the experimental results of Rivier and
Vergé-Lapisardi and the theoretical results calculated by
Fujisawa’s formulation [12]. From this figure it is clear

that while our theoretical results and Rivier and Vergé-
Lapisardi’s experimental results agree quile well when
0.2 < g/h < 0.6, the agreement is far from satisfactory
in the range 0 < g/h < 0.2. It has already been established
that theoretical results from (7) for this range of values of
g/h, g/h being the parameter which essentially controls the
accuracy of (7), are in error by less than about 0.7 percent,
and it must therefore be concluded that Rivier and Vergé-
Lapisardi’s experimental results for g/h < 0.2 are in error.
Note also that results calculated from Fujisawa’s formula-
tion which were said by Rivier and Vergé-Lapisardi to be
inaccurate are, in fact, in this case, quite accurate for small
g/h. Finally, observe from Fig. 2 that the approximately
linear portion of the curve, which was the characteristic
used by Rivier and Vergé-Lapisardi to evaluate the mag-
nitude of the components of their equivalent circuit, is in
fact more extensive than their experimental work indicated.

V. INCORPORATION OF A SEMICONDUCTOR DEVICE

In the theoretical work presented in this paper so far,
only the air-gap situation has been considered, although
it has been intimated that the analysis may be ¢asily modified
to consider the particular case where a semiconductor
device is placed in the gap. The situation in the gap region
then becomes that shown in.Fig. 3 where g, the height of
the gap, is dictated by the device size; and d, the radius of
the device, is usually less than g, the central post radius.
In some situations one may take g = d.

Let us consider, briefly, the case of a solid-state oscillator
and for the present assume that the cavity is not connected
to any external load. If the device admittance, Yj, is taken
to be given by

_ 2nd [§ Hyd,z) dz

Y,
"7 g [$E(dz)dz

where E(d,z) and H,(d,z) are the electric and magnetic
fields, assumed rotationally symmetric, on the device
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Fig. 3. Cross section of the cavity with a semiconductor device in

position.

surface, then it can be shown [5] that the transcendental
equation for the resonant frequency is

Im (Z_h YD') %o+ Y sin mc
2ra m=1 me

. (C . J1/6(mc) +

(me)t/6

D J5/6(mc)) (8)

(mc)*/6

where Y, is the device admittance referred to the surface
r = a. (Whether oscillation would occur in practice is, of
* course, dependent on the satisfaction of other criteria.)
Now if we included consideration of the means by which
the cavity was connected to an external load we would
obtain yet another équation for that particular situation.
However, the important point to appreciate is that if the
load is only lightly coupled fo the cavity, then the resonant
frequency is about the same as, and varies in a similar
manner to, that given by (8).

In view of the wide variety of possible coupling systems
we do not propose to pursue this avenue further, bit rather
to conclude this paper with an investigation of the tuning
characteristics of an air-gap cavity as predicted by (7), since
this provides soime qualitative appreciation of the electrical
behavior of the cavity.

VI. TUNING CHARACTERISTICS

In Fig. 4 ka,., the value of ka at resonance, is plotted as a
function of hja for bja = 5 and various values of g/a
while Fig. 5 is a plot of ka,., versus h/a for g/a = 1 and
various values of b/a. (NB, the curves have been plotted as
a function of h/a since, in practice, the cavity height is
frequently used as the means of adjusting the resonant
frequency.) From these curves it can be seen that for a given
increment in A the change in the resonant frequency is
greater for small values of g/a (b/a fixed) than for larger
values of g/a and is also greater for smaller values of b/a
(g/a fixed) than for larger values of b/a. The advantage one
takes of these features depends, of course, on the application
in mind. For example, if one was designing a tunable
oscillator with the cavity height being the tuning parameter,
one might choose a small value of b/a and a small value of
g/a in order to obtain a wide frequency variation for a given

-0 T T
0 2 4 6 8 r’ 10

1
E

Fig. 4. Variation of ka,., as a function of #/a for bja = 5 and various
values of g/a.

1.2+
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Fig. 5. Variation of ka,. as a function of #/a for g/a = 1 and various
values of b/a.

limited variation in 4. On the otheér hand, if good frequency
stability was required from a fixed frequency oscillator,
larger values for both b/a and g/a might be chosen. (NB,
the maximum value of g/a is determined by the device size.)
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VII. CoNCLUSION

The reentrant cylindrical cavity has been investigated
in this paper and we have seen that over the years a number
of different formulations have been published from which
the properties of the cavity, and in particular the resonant
frequency, may be calculated. This cavity has recently
found application in the construction of solid-state oscil-
lators and attention has been drawn to recent theoretical
attempts to obtain accurate results for the resonant fre-
quency of cavities suitable for mounting semiconductor
devices. In this paper a formulation has been developed,
being basically a superior form of Hansen’s approach [1],
which predicts the fundamental resonant frequency of
the cavity to better than 1 percent if ¢ < 2a. Furthermore,
it has been demonstrated that this new theory is math-
ematically simpler and numerically more efficient than
alternative formulations which are not as accurate.

APPENDIX

The numerical solution of (7) is usually required either for
the situation where @, b, &, and the resonant frequency are
prescribed and g is required to be found, or where a, b, A,
and g are prescribed and the resonant frequency is required
to be found. For both of these cases it is possible to obtain
an equation from (7) one side of which is invariant with
respect to the unknown quantity, namely (7) for the former
case and (7) divided by the term in parenthesis on the RHS
of (7) for the latter. The results for the two cases g/h = 0
and g/h = 1, which are known analytically, may then be
used to initiate an iterative solution procedure in which a
result for the unknown is obtained from the previous
results by a curve-fitting technique. This iteration procedure
may be continued until the unknown is evaluated to the
required precision. Solution techniques of this kind have
been used frequently in the past and, as such, the details
will not be further discussed here.

The numerical work involved in (7), or modifications of
it, is for the most part very simple, the exception being the
evaluation of the sum of the infinite series. For narrow-gap
situations it can be shown that

i %, - sin me (C Jy6(me)
m=1

D- Js ,6(mc))

mc (me)'/® (mc)*'®
c 5 [ 2Ly ()" L Ly e
I " T om 7 ka m? me

J16(me) J (mc))
c-Jus p-Jss
( (me)*/® (mc)>'®
+ 2ﬂl~ﬁ ) (sin mc)Z}
T me

: 187
kh i o

— = (31 — cos [2c]) + sin® ¢(2 In [2 sin c] — 1))
e

2
- (ﬁl—) 'ki'%z'(n‘* + [r = ¢]* = 27%[7 — )
a C

T
+ 2k (0.047 57 — 003529 - (1 - —ﬂ—))

7T tan ¢/2

2
+ 0.01765-(@) LAY )
n ka
where
1 ,
ﬁm=n1—(-r;l—-2—:—1) for mZZand[,'l:O

This expression is accurate to within +0.01 percent if M
is chosen to satisfy the relationship

M<1.6ESM+1.
a

A detailed derivation of the foregoing result may be found
elsewhere [5].
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